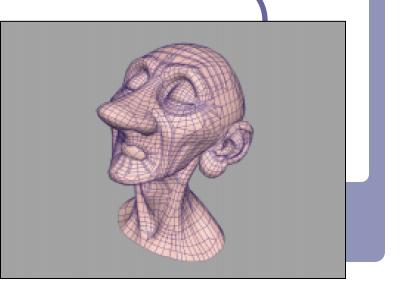


Advanced Graphics

Subdivision Surfaces



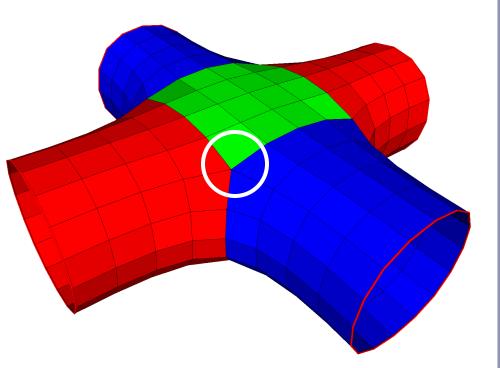
Alex Benton, University of Cambridge – A.Benton@damtp.cam.ac.uk Supported in part by Google UK, Ltd

NURBS patches aren't the greatest

- NURBS patches are *n*X*m*, forming a mesh of quadrilaterals.
 - What if you wanted triangles or pentagons?
 - A NURBS dodecahedron?
 - What if you wanted vertices of valence other than four?
- NURBS expressions for triangular patches, and more, do exist; but they're cumbersome.

Problems with NURBS patches

- Joining NURBS patches with C_n continuity across an edge is challenging.
- What happens to continuity at corners where the number of patches meeting isn't exactly four?
- Animation is tricky: bending and blending are doable, but not easy.



Sadly, the world isn't made up of shapes that can always be made from one smoothlydeformed rectangular surface.

Subdivision surfaces

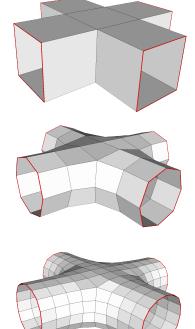
- Beyond shipbuilding: we want guaranteed continuity, without having to build everything out of rectangular patches.
 - Applications include CAD/CAM, 3D printing, museums and scanning, medicine, <u>movies</u>...

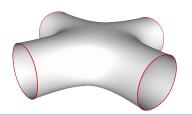
• The solution: *subdivision surfaces*.

Geri's Game, by Pixar (1997)

Subdivision surfaces

- Instead of ticking a parameter *t* along a parametric curve (or the parameters *u,v* over a parametric grid), subdivision surfaces repeatedly refine from a coarse set of *control points*.
- Each step of refinement adds new faces and vertices.
- The process converges to a smooth *limit surface*.



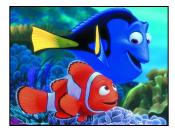


Subdivision surfaces – History

- de Rahm described a 2D (curve) subdivision scheme in 1947; rediscovered in 1974 by Chaikin
- Concept extended to 3D (surface) schemes by two separate groups during 1978:
 - Doo and Sabin found a biquadratic surface
 - Catmull and Clark found a bicubic surface
- Subsequent work in the 1980s (Loop, 1987; Dyn [Butterfly subdivision], 1990) led to tools suitable for CAD/CAM and animation

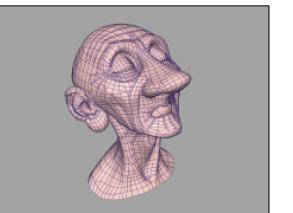
Subdivision surfaces and the movies

- Pixar first demonstrated subdivision surfaces in 1997 with Geri's Game.
 - Up until then they'd done everything in NURBS (Toy Story, A Bug's Life.)
 - From 1999 onwards everything they did was with subdivision surfaces (Toy Story 2, Monsters Inc, Finding Nemo...)
 - Two decades on, it's all heavily customized.
- It's not clear what Dreamworks uses, but they have recent patents on subdivision techniques.



Useful terms

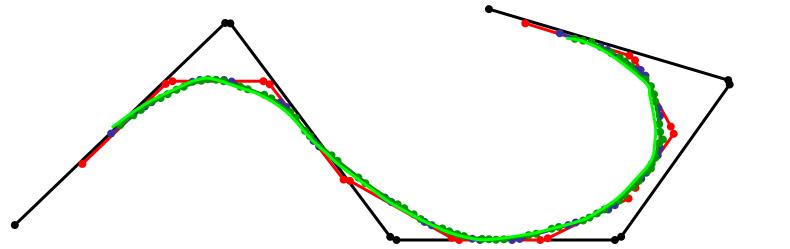
- A scheme which describes a 1D curve (even if that curve is travelling in 3D space, or higher) is called *univariate*, referring to the fact that the limit curve can be approximated by a polynomial in one variable (*t*).
- A scheme which describes a 2D surface is called *bivariate*, the limit surface can be approximated by a *u*, *v* parameterization.
- A scheme which retains and passes through its original control points is called an *interpolating* scheme.
- A scheme which moves away from its original control points, converging to a limit curve or surface nearby, is called an *approximating* scheme.



Control surface for Geri's head

How it works

- Example: *Chaikin* curve subdivision (2D)
 - On each edge, insert new control points at ¹/₄ and ³/₄ between old vertices; delete the old points
 - The *limit curve* is C1 everywhere (despite the poor figure.)

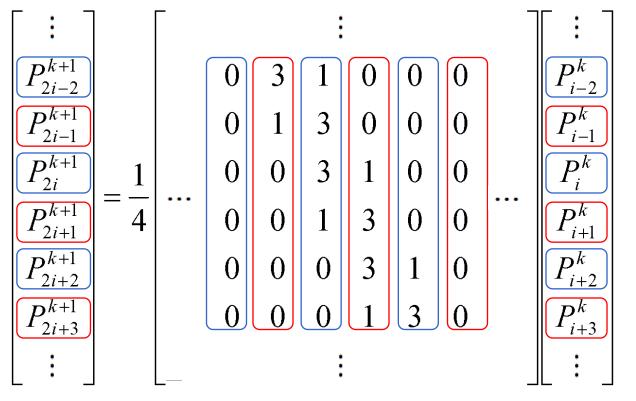


Notation

Chaikin can be written programmatically as: $P_{i}^{k} \qquad P_{2i}^{k+1} = (\frac{3}{4})P_{i}^{k} + (\frac{1}{4})P_{i+1}^{k} \leftarrow Even$ $P_{2i}^{k+1} \qquad P_{2i+1}^{k+1} = (\frac{1}{4})P_{i}^{k} + (\frac{3}{4})P_{i+1}^{k} \leftarrow Odd$...where k is the 'generation'; each generation will have twice as many control points as before. Notice the different treatment of generating odd and $\frac{1}{1}$ even control points. Borders (terminal points) are a special case. i+1

Notation

Chaikin can be written in vector notation as:



Notation

- The standard notation compresses the scheme to a *kernel*:
 - $h = (1/4)[\dots, 0, 0, 1, 3, 3, 1, 0, 0, \dots]$
- The kernel interlaces the odd and even rules.
- It also makes matrix analysis possible: eigenanalysis of the matrix form can be used to prove the continuity of the subdivision limit surface.
 - The details of analysis are fascinating and beyond the scope of this course; check out Malcolm Sabin's lecture series, "Computer Aided Geometric Design", over at the CMS.
- The limit curve of Chaikin is a quadratic B-spline!

Reading the kernel

Consider the kernel h=(1/8)[...,0,0,1,4,6,4,1,0,0,...]You would read this as $P_{2i}^{k+1} = (\frac{1}{8})(P_{i-1}^{k} + 6P_{i}^{k} + P_{i+1}^{k})$ $P_{2i+1}^{k+1} = (\frac{1}{8})(4P_{i}^{k} + 4P_{i+1}^{k})$

The limit curve is provably C2-continuous.

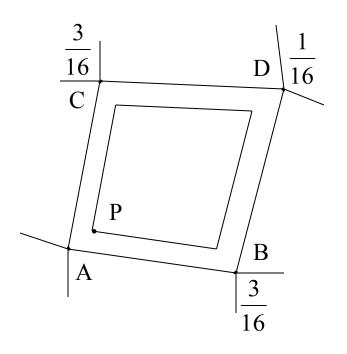
Making the jump to 3D: Doo-Sabin

Doo-Sabin takes Chaikin to 3D:

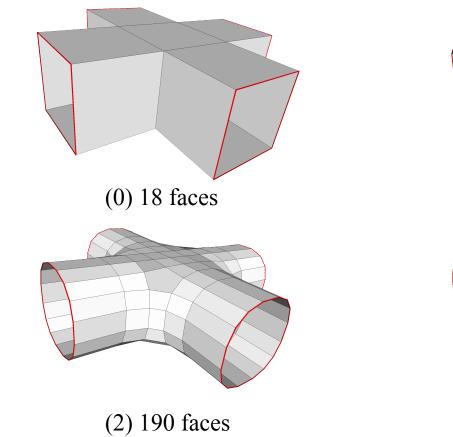
P = (9/16) A + (3/16) B + (3/16) C + (1/16) D

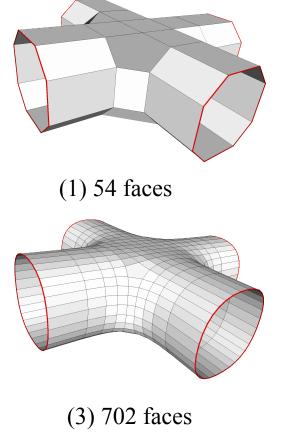
This replaces every old vertex with four new vertices. The limit surface is biquadratic,

C1 continuous everywhere.



Doo-Sabin in action

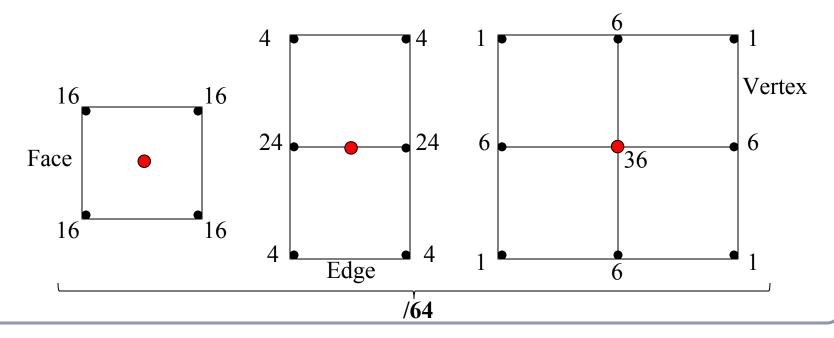


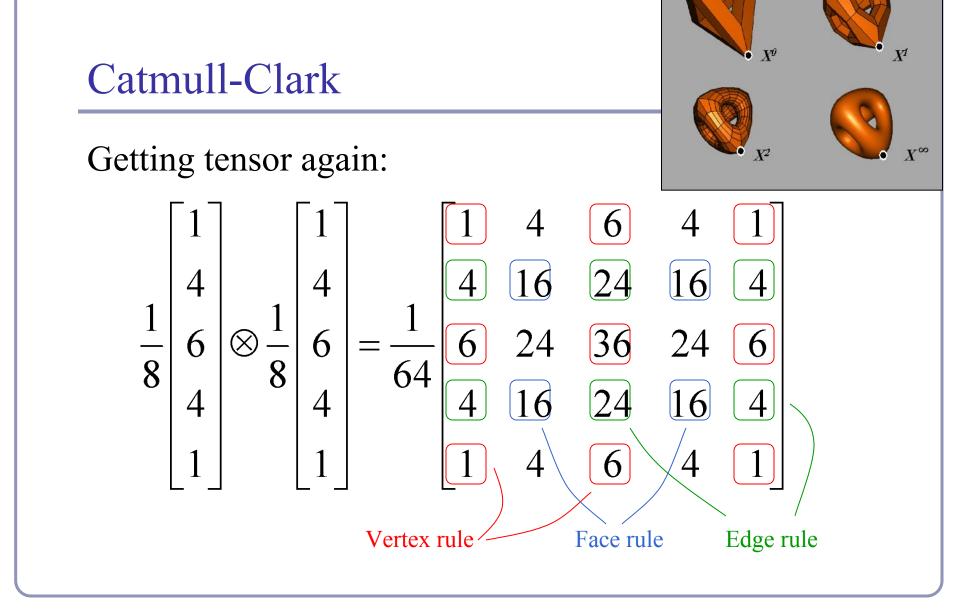


Catmull-Clark

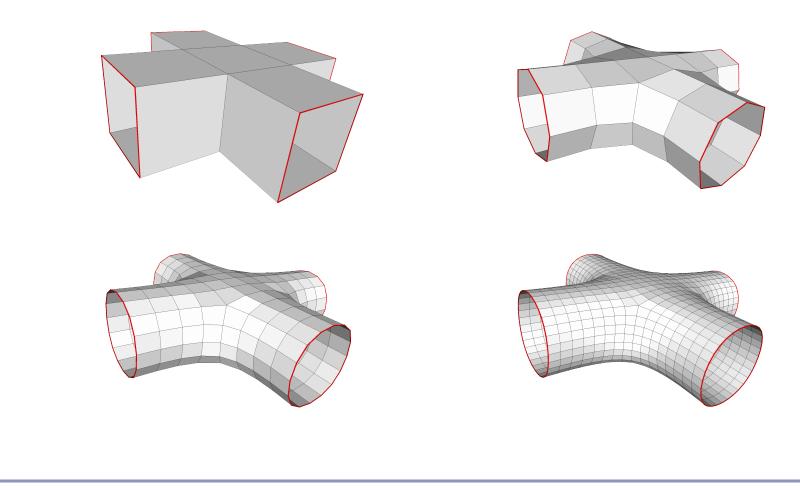
• *Catmull-Clark* is a bivariate approximating scheme with kernel *h*=(1/8)[1,4,6,4,1].

• Limit surface is bicubic, C2-continuous.

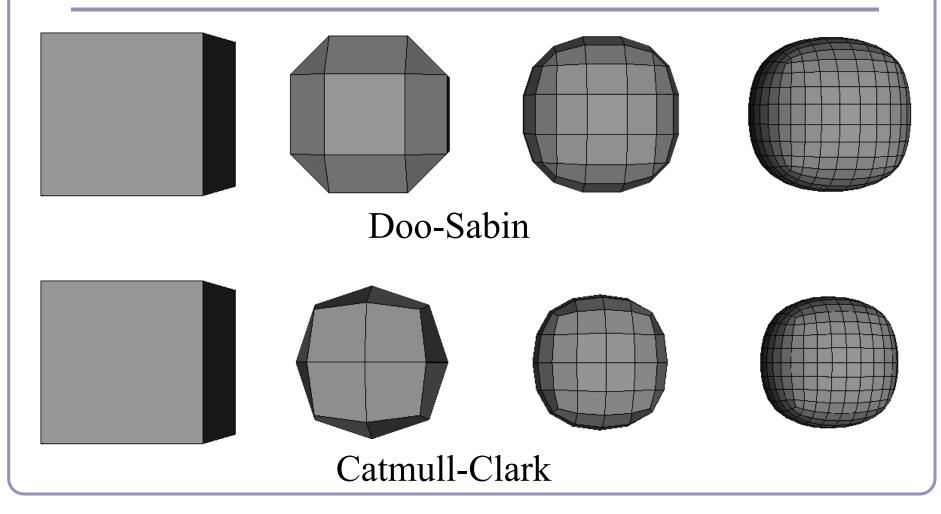




Catmull-Clark in action



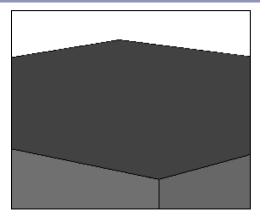
Catmull-Clark vs Doo-Sabin

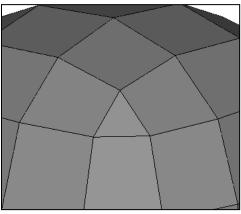


Extraordinary vertices

- Catmull-Clark and Doo-Sabin both operate on quadrilateral meshes.

 - All faces have four boundary edges All vertices have four incident edges
- What happens when the mesh contains *extraordinary* vertices or faces?
 - For many schemes, adaptive weights exist which can continue to guarantee at least some (non-zero) degree of continuity, but not always the best possible.
- CC replaces extraordinary faces with extraordinary vertices; DS replaces extraordinary vertices with extraordinary faces.





Detail of Doo-Sabin at cube corner

Extraordinary vertices: Catmull-Clark

Catmull-Clark vertex rules generalized for extraordinary vertices:

- Original vertex: (4n-7)/4n
- Immediate neighbors in the one-ring:

 $3/2n^2$

• Interleaved neighbors in the one-ring: $1/4n^2$

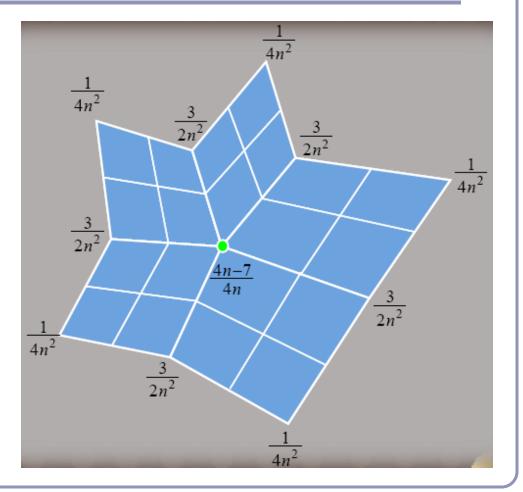
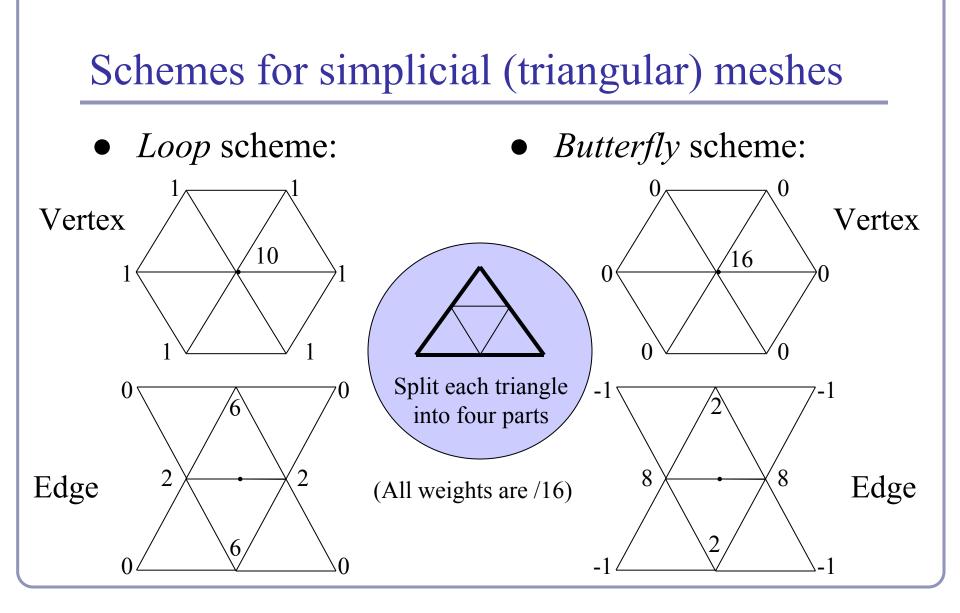
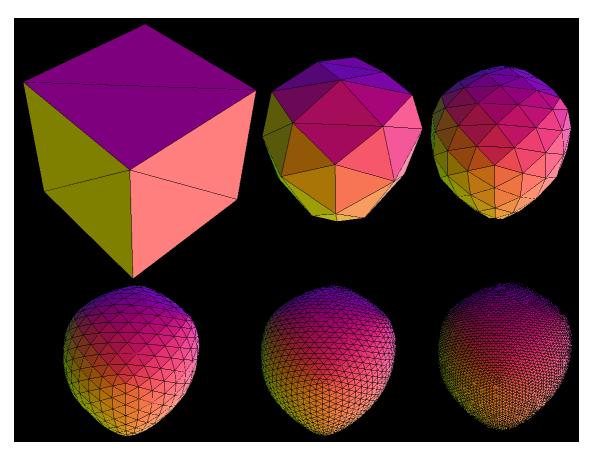


Image source: "Next-Generation Rendering of Subdivision Surfaces", Ignacio Castaño, SIGGRAPH 2008



Loop subdivision

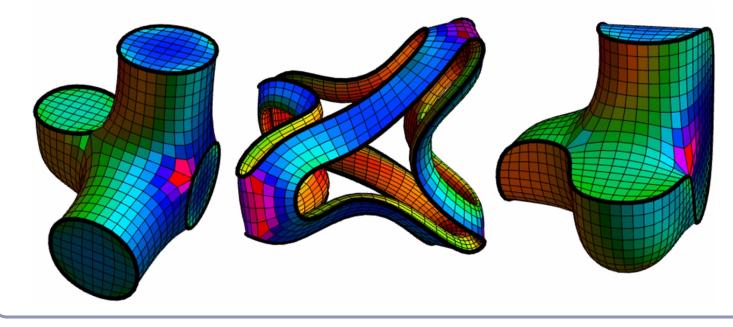


Loop subdivision in action. The asymmetry is due to the choice of face diagonals.

Image by Matt Fisher, http://www.its.caltech.edu/~matthewf/Chatter/Subdivision.html

Creases

Extensions exist for most schemes to support *creases*, vertices and edges flagged for partial or hybrid subdivision.



Still from "Volume Enclosed by Subdivision Surfaces with Sharp Creases" by Jan Hakenberg, Ulrich Reif, Scott Schaefer, Joe Warren <u>http://vixra.</u> org/pdf/1406. 0060v1.pdf

Continuous level of detail

For live applications (e.g. games) can compute *continuous* level of detail, e.g. as a function of distance:



Direct evaluation of the limit surface

- In the 1999 paper Exact Evaluation Of Catmull-Clark Subdivision Surfaces at Arbitrary Parameter Values, Jos Stam (now at Alias| Wavefront) describes a method for finding the exact final positions of the CC limit surface.
 - His method is based on calculating the tangent and normal vectors to the limit surface and then shifting the control points out to their final positions.
 - What's particularly clever is that he gives exact evaluation at the extraordinary vertices. (Non-trivial.)

Bounding boxes and convex hulls for subdivision surfaces

- The limit surface is (the weighted average of (the weighted averages of (the weighted averages of (repeat for eternity...)))) the original control points.
- This implies that for any scheme where all weights are positive and sum to one, the limit surface lies entirely within the convex hull of the original control points.
- For schemes with negative weights:
 - Let $L=max_t \Sigma_i |N_i(t)|$ be the greatest sum throughout parameter space of the absolute values of the weights.
 - For a scheme with negative weights, *L* will exceed 1.
 - Then the limit surface must lie within the convex hull of the original control points, expanded unilaterally by a ratio of (*L*-1).



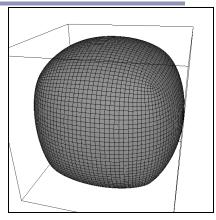
Splitting a subdivision surface

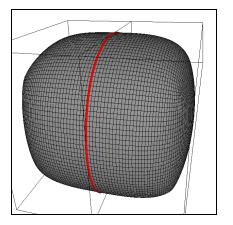
Many algorithms rely on subdividing a surface and examining the bounding boxes of smaller facets.

• Rendering, ray/surface intersections...

It's not enough just to delete half your control points: the limit surface will change (see right)

• Need to include all control points from the previous generation, which influence the limit surface in this smaller part.

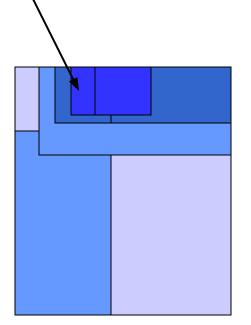




(Top) 5x Catmull-Clark subdivision of a cube(Bottom) 5x Catmull-Clark subdivision of two halves of a cube;the limit surfaces are clearly different.

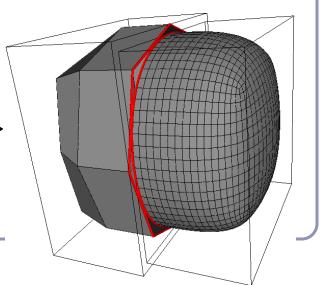
Ray/surface intersection

- To intersect a ray with a subdivision surface, we recursively split and split again, discarding all portions of the surface whose bounding boxes / convex hulls do not lie on the line of the ray.
- Any subsection of the surface which is 'close enough' to flat is treated as planar and the ray/plane intersection test is used.
- This is essentially a binary tree search for the nearest point of intersection.
 - You can optimize by sorting your list of subsurfaces in increasing order of distance from the origin of the ray.



Rendering subdivision surfaces

- The algorithm to render any subdivision surface is exactly the same as for Bezier curves:
 - "If the surface is simple enough, render it directly; otherwise split it and recurse."
- One fast test for "simple enough" is,
 "Is the convex hull of the limit surface sufficiently close to flat?"
- Caveat: splitting a surface and subdividing one half but not the other can lead to tears where the different resolutions meet. \rightarrow



Rendering subdivision surfaces on the GPU

- Subdivision algorithms have been ported to the GPU, often using *geometry shaders*.
 - This subdivision can be done completely independently of geometry, imposing no demands on the CPU.
 - Uses a complex blend of precalculated weights and shader logic
 - Impressive effects in use at id, Valve, etc!

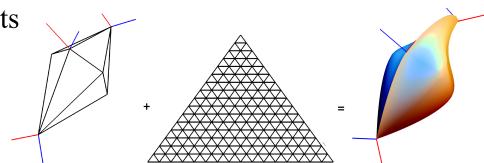


Figure from *Generic Mesh Renement on GPU*, Tamy Boubekeur & Christophe Schlick (2005) LaBRI INRIA CNRS University of Bordeaux, France

Subdivision Schemes—A partial list

- <u>Approximating</u>
 - Quadrilateral
 - (1/2)[1,2,1]
 - (1/4)[1,3,3,1] (Doo-Sabin)
 - (1/8)[1,4,6,4,1] (Catmull-Clark)
 - Mid-Edge
 - Triangles
 - Loop

- Interpolating
 - Quadrilateral
 - Kobbelt
 - Triangle
 - Butterfly
 - " $\sqrt{3}$ " Subdivision

Many more exist, some much more complex This is a major topic of ongoing research

References

- Catmull, E., and J. Clark. "Recursively Generated B-Spline Surfaces on
- Arbitrary Topological Meshes." *Computer Aided Design*, 1978. Dyn, N., J. A. Gregory, and D. A. Levin. "Butterfly Subdivision Scheme for Surface Interpolation with Tension Control." *ACM Transactions on Graphics*. Vol. 9, No. 2 (April 1990): pp. 160–169. Halstead, M., M. Kass, and T. DeRose. "Efficient, Fair Interpolation Using
- Catmull-Clark Surfaces." *Siggraph '93*. p. 35. Zorin, D. "Stationary Subdivision and Multiresolution Surface
- Representations." Ph.D. diss., California Institute of Technology, 1997
- Ignacio Castano, "Next-Generation Rendering of Subdivision Surfaces." Siggraph '08, <u>http://developer.nvidia.com/object/siggraph-2008-Subdiv.html</u>
- Dennis Zorin's SIGGRAPH course, "Subdivision for Modeling and Animation", http://www.mrl.nyu.edu/publications/subdiv-course2000/